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 i  g  h  l  i  g  h  t  s

Meta-analysis  is an  invaluable  tool  in  the  life  sciences.
Methods  for  the  application  to  clinical  data  are  well  documented.
Consideration  is  required  when  applying  these  methods  to preclinical  data.
We  describe  the  application  to preclinical  data.
We  describe  effect  size  calculations  and  assessing  sources  of  heterogeneity.

 r  t i  c  l  e  i  n  f  o

rticle history:
ccepted 16 September 2013

a  b  s  t  r  a  c  t

Meta-analyses  of data  from  human  studies  are  invaluable  resources  in  the  life  sciences  and  the  methods
to  conduct  these  are  well  documented.  Similarly  there  are  a number  of benefits  in conducting  meta-
analyses  on  data  from  animal  studies;  they  can  be  used  to inform  clinical  trial design,  or  to  try and  explain
eywords:
eta-analysis

nimal studies
eterogeneity
eta-regression

tratified meta-analysis

discrepancies  between  preclinical  and clinical  trial results.  However  there  are  inherit  differences  between
animal  and  human  studies  and  so  applying  the same  techniques  for  the  meta-analysis  of  preclinical  data
is  not  straightforward.  For  example  preclinical  studies  are  frequently  small  and there  is  often  substantial
heterogeneity  between  studies.  This  may  have  an  impact  on both  the  method  of  calculating  an  effect  size
and  the  method  of pooling  data.  Here  we  describe  a  practical  guide  for the meta-analysis  of  data  from
animal  studies  including  methods  used  to  explore  sources  of heterogeneity.
© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
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. Introduction

Systematic review is a type of literature review that aims to
dentify all relevant studies to answer a particular research question
Greenhalgh, 1997; Cook et al., 1997). Data from these studies are
ften used in meta-analysis. The Cochrane collaboration has been
ivotal in providing a framework for evidence-based health care to
uide clinical decisions and healthcare policies. The use of system-
tic review and evidence-based healthcare is widely accepted by
cademia, healthcare professionals and funders, and these reviews
eceive twice as many citations in peer-reviewed journals as non-
ystematic reviews (Mickenautsch, 2010).

The systematic synthesis of data from the basic sciences
s relatively novel. The Collaborative Approach to Meta-
nalysis and Review of Animal Data from Experimental Studies

CAMARADES; www.camarades.info) was established in 2004
o promote and support the use of similar approaches to
hose used by the Cochrane Collaboration to data from ani-

al  studies. Other similar initiatives, such as the SYstematic
eview Centre for Laboratory animal Experimentation (SYRCLE;
ww.umcn.nl/Research/Departments/cdl/SYRCLE) research group

lso actively promote and train individuals in the conduct of
ystematic reviews of preclinical studies. Whilst the Cochrane
ethodology is considered gold-standard, their remit is limited to

ealth care interventions tested in humans, and their activity does
ot extend to in vitro or in vivo laboratory studies. Crucially, there
re fundamental differences in the purposes, design and conduct
f systematic review and meta-analysis of preclinical and clinical
tudies which mean that standard methodologies for systematic
verviews and meta-analysis need to be adapted to this new
etting.

The objectives of this paper are:

to outline the rationale for the review and synthesis of preclinical
data and to explain why the differences between clinical and pre-
clinical reviews may  require different approaches to the conduct
of systematic review and meta-analysis;
to present the methodology for a systematic review of preclinical
data in a self-contained tutorial.

Although most of the statistical fundamentals used to review
ata from preclinical data are not novel, to our knowledge this is
Please cite this article in press as: Vesterinen HM, et al. Meta-analysis of da
http://dx.doi.org/10.1016/j.jneumeth.2013.09.010

he first self-contained tutorial on applying these to the review of
reclinical data. Unless otherwise stated, the formulae are adapted
rom those described by Borenstein (2009) which we recommend
or further reading.
 . . . .  . . .  . . . . .  .  . . .  .  . . . . .  . .  . . . . . . .  . . . . .  . . .  .  . . .  . . .  .  .  . . . . .  .  .  .  .  .  . . . . . . . . . .  .  . .  .  . 00

This paper is organised as follows: in Section 2 we  describe
why we perform systematic reviews of preclinical data and what
makes them different to clinical systematic reviews; in Section 3
we describe the methodological approach to performing a review
of the preclinical data; and in Section 4 we describe further consid-
erations which may  be helpful to the reader.

2. Why  preclinical systematic reviews and what makes
them different to clinical systematic reviews

Systematic reviews of data from preclinical literature are
important for a number of reasons. First and foremost, although
systematic reviews are not bias free, their purpose is to reduce it
by outlining transparent aims, objectives and methodology. This
approach enables us to identify all of the published literature to
answer a particular research question. In turn this may highlight
gaps in our knowledge which can be fulfilled by further preclinical
experimentation, or it can help us to avoid unnecessary replica-
tion which is unethical and of limited benefit. Secondly, clinical
trials of novel interventions should not proceed without a rigorous
appraisal of the preclinical data. Systematic reviews can tell us the
efficacy of any given intervention as well as the limits to efficacy
which may  aid in clinical trial design. Additionally, we can assess
both the internal and external validity of each included study and
assess for publication bias which can help to predict outcome in the
clinical setting.

There are fundamental differences in the purposes, design and
conduct of systematic review and meta-analysis of preclinical and
clinical studies. Clinical reviews are intrinsically confirmatory (see
The Cochrane Handbook by Higgins and Green, 2009): the aim of a
Cochrane review is to provide evidence to allow practitioners and
patients to make informed-decisions about the delivery of health-
care. Because certain aspects of experimental design can introduce
bias to the results of relevant studies, a central part of a Cochrane
review is to include only those studies meeting a certain threshold
of internal validity to allow confidence in the results reported. In
contrast, preclinical reviews are typically exploratory. Because the
summary estimate of the effectiveness of an intervention in animal
models is, of itself, not particularly useful information; the practice
has been to include all available data. This is useful for identify-
ing if there are any gaps in the data. One important purpose (and
perhaps the single most important impact) of systematic reviews
of preclinical studies has been to explore the impact of possible
ta from animal studies: A practical guide. J Neurosci Methods (2013),

sources of bias, and we recommend that this is carried out in all
systematic reviews. The important findings from such reviews are
differences between different types of experiments (i.e. sources of
heterogeneity) rather than a headline figure for how “good” a drug
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s. Thus these analyses have a greater focus on exploring potential
ources of heterogeneity. Additionally, reviews of preclinical data
re hypothesis generating and can be used to inform the design and
onduct of future trials.

Additionally, animal studies are generally small (with a sample
ize of around 10 per group), and slightly different studies of an
ndividual intervention are often performed across many labora-
ories. In contrast, clinically trials are generaly larger, with single
tudies performed across multiple centres. In animal studies there
s great emphasis on minimising variance, for instance through the
se of inbred strains, pathogen free environments and specific han-
ling conditions. This is not a focus for clincial trial design (and
ight indeed be considered to limit the generalisability of their

ndings). Differences between individual animal studies (using dif-
erent strains, different conditions) are therefore, proportionately,
arger. This has important implications for the conduct, analysis and
nterpretation of meta-analysis of data from preclinical studies.

Finally, conventional meta-analysis assumes effect sizes and
heir errors are independent when investigating sources of hetero-
eneity. Correlated error estimates can occur because preclinical
tudies often report complex experiments where control or treat-
ent groups may  be shared (i.e. in multi-armed studies) or use
ultiple comparisons from one study (such as multiple follow

ps or measures of outcome). Correlated effect sizes estimates
an occur between, for example, studies from the same laboratory
r investigator (Hedges et al., 2010). These correlations between
ffect sizes, errors, or both, result in dependencies that may  con-
ound analyses. However, there may  be other sources of correlation
etween different animal studies, for instance relating to ani-
al  husbandry, group housing, source of animals or particular

xperimental design characteristics shared between different stud-
es; because this is essentially observational research we  cannot
xclude these factors unless they are reported, and as such this is a
imitation to our approach.

A range of responses to the issue of dependency is possible
n the meta-analysis preclinical studies (Hedges et al., 2010). This
ncludes: ignoring the correlation arising due to all or some of the
escribed reasons, creating a single synthetic effect size per sam-
le, modelling dependence with full multivariate analysis, or using
ecently developed robust methods that estimate empirical stan-
ard errors. In our work we typically chose to explicitly address the

ssue of correlation due to shared control group by appropriately
djusting relevant sample sizes (detailed further in Section 3.3),
hile largely ignoring other sources of correlation. However, as the

oftware implementations of new robust methodologies become
andily available (discussed further in Section 4.1), they should be
eriously considered when conducting meta-analysis of preclinical
tudies (van den Noortgate et al., 2013).

. Methodological approach

.1. Research protocol

As with any scientific research the first step should be to pro-
uce a detailed protocol describing what will be done, and why.

n many cases the summary estimate of efficacy is of minor inter-
st, and it is the heterogeneity between studies, and the differences
hich account for this heterogeneity, which are much more impor-

ant. The summary estimate of efficacy should always be presented
ith, and interpreted in the light of, an analysis of heterogeneity.

he protocol should define the aim and objectives, the hypothesis,
Please cite this article in press as: Vesterinen HM, et al. Meta-analysis of da
http://dx.doi.org/10.1016/j.jneumeth.2013.09.010

nd the steps that will be taken to meet the objectives. It should
nclude (i) the search strategy used to identify the relevant litera-
ure (for details see Leenaars et al., 2012) (ii) criteria for inclusion or
xclusion of literature identified by using the search strategy; (iii)
 PRESS
ience Methods xxx (2013) xxx– xxx 3

the data that will be extracted, (iv) the primary outcome measure of
interest. The protocol should define the methodological approach
for (v) the calculation of individual effect sizes for each comparison,
(vi) the calculation of summary effect sizes, and (vii) whether study
design characteristics are going to be assessed as potential sources
of heterogeneity, and if so, which characteristics, and by which
method; and (viii) the method of assessing the internal validity
(that is measures to avoid bias).

Like Cochrane, we encourage investigators to make protocols
publicly available to the research community. This provides evi-
dence that analyses are pre-specified, allows others to comment on
the approach, provides examples to others planning such reviews
and allows potential investigators to identify whether similar
reviews are in progress. CAMARADES hosts a repository of protocols
at: http://www.camarades.info/index files/Protocols.html.

3.2. Data extraction

The results of the systematic search are usually downloaded to
some form of reference management software. Two investigators
independently screen title, abstract and, where necessary, full text,
judging the work against the inclusion and exclusion criteria. Dis-
agreements are resolved by discussion or by a third investigator.
Disposal of literature thus identified (i.e. exclusions, with reasons
given) can helpfully be presented in a flow chart akin to the PRISMA
flow chart used in systematic reviews and meta-analysis of health
care interventions (Liberati et al., 2009).

Included literature then forms the analysis set. Data should be
extracted systematically and consistently from all relevant publi-
cations. The two  types of information to be extracted are (i) the
pre-defined study design characteristics; and (ii) outcome data
(including the outcome measure used, the number of animals in
which this was assessed, the aggregate value of effect (i.e. mean,
median or event data) and where applicable a measure of group
variance).

3.3. Meta-analysis

Meta-analysis proceeds through:

(1) calculating an effect size for each comparison;
(2) weighting the effect sizes;
(3) calculating efficacy where more than one relevant outcome is

reported in the same cohort of animals;
(4) calculating a summary effect size and
(5) calculating the heterogeneity, and the extent to which the pre-

defined study design characteristics explain this heterogeneity.

In the following sections we  describe the calculation of effect
sizes in the situation where these represent the magnitude of treat-
ment effects; in Section 4.6 we describe how these methods can be
applied to other types of animal experiment.

Irrespectively of the nature of the effect size, the first essen-
tial step in conducting meta-analysis of preclinical studies is
correct estimation of the number of animals used in individual
experiments. Since a single experiment can contain a number of
comparisons, a control group can serve more than one treatment
group. Were this control cohort to be included in more than one
comparison, it would be represented more than once in the sum-
mary estimates calculated. To avoid this, we  recommend to correct
the number of animals reported in the control group by dividing
the reported number by the number of treatment groups served
ta from animal studies: A practical guide. J Neurosci Methods (2013),

in order to give a “true number of control animals”. This corrected
number can then be used when calculating the total number of ani-
mals in the meta-analysis and where the number of animals is used
in the weighting of effect sizes (Eqs. (1) and (2)).
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Table 1
Equations used in the meta-analysis of data from preclinical studies.

Equation

n′
c = nc

Treatment groups served by one control
(1)

Where nc refers to the number of animals in the control group and n′
c

refers to the true number of control animals.

N = nrx + n′
c (2)

Where nrx refers to the number of animals in the treatment group and n′
c is

calculated as shown in Eq. (1).

SDc = SEMc × √
nc and SDrx = SEMrx × √

nrx (3)
Where nc and nrx refer to the number of animals in the control and

treatment group respectively.

ESi = x̄c − x̄rx (4)
Where x̄c and x̄rx are the mean reported scores in the control and

treatment group respectively and i denotes an individual study estimate.

SEi =
√

N

nrx × n′
c

S2
pooled

(5)

Where S2
pooled

is calculated as shown in Eq. (6).

S2
pooled

=
√

(n′
c − 1)SD2

c + (nrx − 1)SD2
rx

N − 2
(6)

Where SD2
c and SD2

rx are the reported standard deviations for the control
and treatment group respectively, using Eq. (3) to convert from standard
errors if necessary.

ESi = 100% × (x̄c − x̄sham) − (x̄rx − x̄sham)
(x̄c − x̄sham)

(7)

Where x̄sham is the mean score for a normal, unlesioned and untreated
animal (see Section 3.3.1.1.ii. for details).

SDc∗ = 100 × SDc

x̄c − x̄sham
and SDrx∗ = 100 × SDrx

x̄rx − x̄sham
(8)

Where SDc and SDrx are the reported standard deviations for the control
and treatment group respectively, using Eq. (3) to convert from standard
errors if necessary.

SEi =

√
SD2

c∗
n′

c
+ SD2

rx∗
nrx

(9)

Where SD2
c∗ and SD2

rx∗ are calculated by squaring the functions calculated
as shown in Eq. (8).∣

x̄c − x̄sham
∣

and
∣
x̄rx − x̄sham

∣
(10)

ESi = 100% × (x̄c − x̄sham) − (x̄rx − x̄sham)
(x̄c − x̄sham)

× direction (11a)

The direction factor is as described in Table 2.

ESi = 100% × (x̄rx − x̄sham) − (x̄c − x̄sham)
(x̄rx − x̄sham)

× direction (11b)

SDC∗ = 100% × SDc

x̄c − x̄sham
and SDrx∗ = 100% × SDrx

x̄c − x̄sham
(12)

SDC∗ = 100% × SDc

x̄rx − x̄sham
and SDrx∗ = 100% × SDrx

x̄rx − x̄sham
(13)

SEi =

√
SD2

c∗
n′

c
+ SD2

rx∗
nrx

(14)

ESi = x̄c − x̄rx

S2
pooled

×
(

1 − 3
4N − 9

)
× direction (15)

Where S2
pooled

is the pooled variance, calculated as shown in Eq. (6). The
direction factor is as described in Table 2.

SEi

√
N

nrx × nc′
+

ES2
i

2(N − 3.94)
(16)

ORi = ai × di

bi × ci
(17)

See Table 3 for details.

SE(ln(ORi)) =
√

1
ai

+ 1
bi

+ 1
ci

+ 1
di

(18)

Where ln is the logarithm to base e (natural logarithm).

ES = log

(
Medianrx

)
(19)
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This approach to dealing with outcome dependence within indi-
idual studies could be overly conservative and whenever there
s a possibility to use newly developed robust methods for han-
ling dependencies (see Section 4.1), these should be considered
Table 1).

.3.1. Calculating an effect size
For each comparison – where outcome in a cohort of animals

eceiving treatment is presented, along with that for in a con-
rol cohort – we calculate an effect size. A number of methods
re available, each with their merits (for example see: Nakagawa
nd Cuthill, 2007; Baguley, 2009; Durlak, 2009). Here we describe
pproaches for data measured on a continuous scale (absolute
ifference in means, Section 3.3.1.1.i; normalised mean differ-
nces, Section 3.3.1.1.ii; and standardised mean differences, Section
.3.1.1.iii); odds ratios (Section 3.3.1.2); and time to event data (e.g.
edian survival times; Section 3.3.1.3).

.3.1.1. Calculating effect sizes for continuous data (mean outcome
nd its variance). Where we have a mean outcome score and a
easure of its variance we can calculate an absolute difference in
eans, a normalised difference in means, or a standardised differ-

nce in means. For experiments which report standard error of the
ean (SEM), these are converted to standard deviations (SD; Eq.

3)).
i. Absolute difference in means.  Absolute differences in means

MDi) are the simplest measure of effect size and are the difference
etween the means in the control and treatment groups expressed

n the units in which the outcome is measured (Eqs. (4)–(6)). A
erious limitation to this approach is that the outcome measure
nd its scale must be the same across all studies. For instance, a
0 cubic millimetre reduction in mouse brain infarct volume is a
uch larger effect than the same reduction in infarct volume in

 primate. However, where the outcome measures used are very
imilar, this approach may  be used, and we have done so in anal-
ses of self-administration of opioids (Du Sert et al., 2012) (where
utcome was assessed as the number of administrations per hour).

ii. Normalised mean difference (NMD).  Where data exist on a ratio
cale (that is, where the score that would be achieved by a normal,
ntreated, unlesioned “sham” animal is known or can be inferred),
e can express the absolute difference in means as a proportion.

his value tells us the direction of the effect (i.e. what direction on
he scale is “better” or “worse”), along with the magnitude of the
reatment effect. This is a useful approach because it relates the

agnitude of effect in the treatment group to a normal, healthy
nimal. The most common method to calculate NMD  effect sizes is
s a proportion of the mean in the control group. Typically, effect
izes fall between −100% and +100%.

The effect size is calculated using Eq. (7) with the standard devi-
tions for each group also expressed as a percentage of the control
roup, normalised to the value in the sham group (Eq. (8)) with
tandard error calculated as shown in Eq. (9).

Because animal studies are usually small, and subject to ran-
om error, there are times when the observed lesion effect (the
ifference between sham and control, which serves as the denom-

nator for normalisation) is very small. This can lead to extreme
ositive or negative calculated effect sizes. To account for this we
ave developed a second method for calculating a normalised effect
ize which we use where the absolute value of the effect size,
s usually calculated, is more than 100% for any of the compar-
sons being considered. Under these circumstances we  calculate
he absolute difference between outcomes for each of the control
Please cite this article in press as: Vesterinen HM, et al. Meta-analysis of data from animal studies: A practical guide. J Neurosci Methods (2013),
http://dx.doi.org/10.1016/j.jneumeth.2013.09.010

nd treatment groups and outcome in sham animals (Eq. (10)); and
e express the effect size as the difference between these two

alues expressed as a proportion of the larger of the two; thus if
x̄c − x̄sham

∣∣ >
∣∣x̄rx − x̄sham

∣∣, we use the formula shown in Eq. (11a);

i
Medianc

Where Medianrx and Medianc are the median survival times for the
treatment and control group respectively.

dx.doi.org/10.1016/j.jneumeth.2013.09.010
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Table 1 (Continued)

Wi = 1

SE2
i

(20)

Where SE2
i

is the squared standard error of the effect size calculated as
shown in Eq. (5) for absolute differences in means; Eqs. (9) or (14) for
normalised mean differences; Eq. (16) for standardised mean
differences; and Eq. (18) for odds ratios.

WiESi = ESi × 1

SE2
i

(21)

Wi = N (22)
Where the calculation for N is as shown in Eq. (2).

WiESi = ESi × N (23)

ES�i =

k∑
i=1

WiESi

k∑
i=1

Wi

(24)

Where Wi is the measure of weight (e.g. inverse variance; Eq. (20)), WiESi

is the weighted effect size, and k denotes the total number of studies
included in the meta-analysis.

SE�i =
√

Ncomparisons∑k

i=1
Wi

(25)

Where Ncomparisons is the number of observations from the same cohort of
animals contributing to the nested estimate of effect size.

ESfixed =

k∑
i=1

ES�i × W∗

k∑
i=1

W∗

(26)

Where W*  is the weight calculated as shown in Eq. (27).

W∗ = 1

SE2
�i

(27)

SEfixed
1√√√√ k∑

i=1

W∗

(28)

�2 = Q − df

C
(29)

Where �2 is the estimation of between-study variance; Q is the sum of the
squared differences in effect sizes between studies and the pooled effect
size  (as shown in Eq. (30)); df is the degrees of freedom (Eq. (31)); and C
is  a measure used to convert the heterogeneity value into an average
rather than a sum of squared deviations, and to put the value back into
its  original units (Eq. (32))

Q =
k∑

i=1

W∗ × (ES�i − ESfixed)2 (30)

Where W* is calculated as shown in Eq. (27).

df  = k − 1 (31)
Where k is the number of comparisons.

C  =
k∑

i=1

W∗ −

k∑
i=1

W∗2

k∑
i=1

W∗

(32)

ES∗
rand

= ES�i × W∗
+�2 (33)

Where W∗
+�2 is calculated as shown in Eq. (34).

W∗
+�2 = 1

(SE2
�i

+ �2)
(34)

Table 1 (Continued)

ESRandom =

k∑
i=1

ES∗
rand

k∑
i=1

W∗
+�2

(35)

SERandom = 1√√√√ k∑
i=1

W∗
+�2

(36)

95%CI  = ESRandom ± 1.95996 × SERandom (37)

W∗
+�2 = 1

1/N + �2
(38)

exp ESRandom (39)
Where ESRandom is calculated as shown in Eq. (35).

SERandom =

√∑k

i=1
[W∗

+�2 (ES�i − ESRandom)2]

N2 ×
∑k

i=1
W∗

+�2

(40)

95%CI  = exp(ESRandom ± 1.95996 × SERandom) (41)

p = CHIDIST(Qglobal − sum(Qstrata)), df ) (42)
Where Qglobal is the amount of heterogeneity for the global estimate of

effect size, Qstrata is the amount of heterogeneity within individual
components of the strata, and df is the degrees of freedom (the number
of  components in the strata minus one).

I2 = Q − df

Q
× 100% (43)

metareg y varlist, se (44)
Where y is the dependant variable, and in this case the effect size; varlist

are the study covariates that are being assessed; se is the standard error
calculated in Eq. (25); the within study variance.

Regression weight = 1
SE�i

+ �2
(45)

Where SE�i is the standard error of the nested effect size for the ith study
�2 is the residual heterogeneity (Thompson and Sharp 1999).

Adjusted R2 = 1 −
(

�2
With Covariates

�2
Without Covariates

)
(46)

t  = ˇ

SEˇ
(47)

AUC = n(x̄) − 0.5(x̄FTP + x̄LTP ) (48)
Where x̄  is the mean of all the individual data points for the treatment or

control group; n is the number of data points contributing to the
analysis; x̄FTP is the first data point; and x̄LTP is the last data point.

SDAUC =

√√√√ k∑
i

(
x̄i − X̄

)2
+

k∑
i

SD2
i

(49)

Where x̄i is the mean value in the control or treatment group at the ith
time point; SD2

i
is the squared standard deviation of the mean at the ith

time point.

Calculated SD = SEMDi

Si ×
(

1 −
(

3
4N−9

)) (50)

Where SEMDi is the standard error of the difference in means, calculated as
shown in Eq. (51); Si is calculated as shown in Eq. (52); and N is the total
number of animals, calculated as shown in Eq. (2).

SEMDi =

√
SD2

c

n′
c

+ SD2
rx

nrx
(51)

Where SD2
c and SD2

rx are the reported standard deviations for the control
and treatment group respectively, using Eq. (3) to convert from standard
errors if necessary.

Si
(nc − 1)SD2

c + (nrx − 1)SD2
rx

N
(52)

dx.doi.org/10.1016/j.jneumeth.2013.09.010


ARTICLE ING Model

NSM 6716 1–11

6 H.M. Vesterinen et al. / Journal of Neurosc

Table 2
The correction factor used to define the direction of the effect size.

Better outcome in? Higher mean score represents? Multiply effect size by?

Control group Better outcome −1
Treatment group Better outcome 1
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Control group Worse outcome −1
Treatment group Worse outcome 1

nd if
∣∣x̄rx − x̄sham

∣∣ >
∣∣x̄c − x̄sham

∣∣, we use the formula shown in Eq.
11b). Importantly, in the calculation of this NMD  effect size, the
alue for sham does not provide the direction of the effect (i.e.
here a higher score represents a better or worse outcome) and

o the effect size needs to be adjusted according to the rules shown
n Table 2.

We  also normalise the standard deviations of the treatment and
ontrol group to the same denominator used in the effect size cal-
ulation. Thus if

∣∣x̄c − x̄sham

∣∣ >
∣∣x̄rx − x̄sham

∣∣, we use the formulae

hown in Eq. (12); or if
∣∣x̄rx − x̄sham

∣∣ >
∣∣x̄c − x̄sham

∣∣, we  use the for-
ula shown in Eq. (13). Finally, the standard error for the effect size

s shown in Eq. (14).
iii. Standardised mean difference.  The NMD  approach above is rel-

vant to ratio scales, but sometimes it is not possible to infer what
 “normal” animal would score – for instance in the number of
eurons per high power field, or spontaneous motor activity – and
ometimes data for unlesioned animals are not available. In these
ircumstances we can use standardised mean differences (SMD).
he difference in group means is divided by a measure of the pooled
ariance to convert all outcome measures to a standardised scale
ith units of standard deviations (SDs). This approach can also be

pplied to data where different measurement scales are reported
or the same outcome measure; for example different measures of
esion size such as infarct volume and infarct area.

There are three common methods used (Egger et al., 2001);
ohen’s D (the difference in means is divided by the pooled stan-
ard deviation) Glass’s Delta, (the difference in means is divided
y the standard deviation of the control group only); and Hedge’s

 (which is based on Cohen’s D but includes a correction factor for
mall sample size bias (Hedges and Olkin, 1985)).

It is suggested that “small” samples are those of less than 10 sub-
ects per group, and because most animal experiments use fewer
han this (Rooke et al., 2011) we have used Hedge’s G effect sizes for
MD  analyses. Hedges G introduces a correction factor between 0
nd 1, and for larger sample sizes this tends towards 1 and therefore
he effect size tends towards Cohen’s D (Cooper et al., 2009).

The formulae used to calculate Hedge’s G standardised effect
ize are shown in Eqs. (15) to (16). Again, the calculations need to
ake into account the direction of effect.

.3.1.2. Calculating an effect size for event data (odds ratio). For
inary outcomes such as the number of animals that developed

 disease or died, data can be represented in a 2 × 2 table (Table 3)
nd the odds ratio and its standard error calculated as described
Egger et al., 2001). Note that where the value in any cell is zero,
.5 is added to each cell to avoid problems with the computation
Please cite this article in press as: Vesterinen HM, et al. Meta-analysis of da
http://dx.doi.org/10.1016/j.jneumeth.2013.09.010

f the standard error. For each comparison the odds ratio (OR) is
alculated using Eq. (17) (Egger et al., 2001). Odds ratios are nor-
ally combined on a logarithmic scale therefore the standard error

able 3
ummary table for events data, where i denotes the individual comparison.

Studyi Event No event Group size

Treatment group ai bi nrx

Control group ci di nc
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of the log OR measure is calculated as shown in Eq. (18) (Egger et al.,
2001);

3.3.1.3. Calculating an effect size for median survival data/time to
event data. Where data are presented as median survival (for exam-
ple in animal models of glioma), we  divide the median survival in
the treatment group by the median in the control group and take
the logarithm of this factor (Eq. (19)). This approach does not allow
for a calculation for the variance of the effect size, and this problem
is addressed in Section 4.4.

3.3.2. Weighting effect sizes
In meta-analysis it is usual to attribute different weights to each

study in order to reflect relative contributions of individual studies
to the total effect estimate. This is done according to the precision
of that study, so that more precise studies are given greater weight
in the calculation of the pooled effect size. In the first stage of meta-
analysis we  recommend to use the inverse variance method, where
individual effect sizes are multiplied by the inverse of their squared
standard error (SE). This gives a weighted effect size WiESi, where
ESi is the individual effect size and Wi is the weight (1/SEi

2) (Eqs.
(20) and (21)). For median survival or other time to event data we
weight effect sizes according to the total number of animals (the
true number of control animals plus the number of treated animals)
in that comparison (Eqs. (22) and (23)).

3.3.3. Combining effect sizes from similar outcome measures in
the same cohort of animals

Where multiple similar outcomes are reported from the same
cohort of animals we must choose either to extract a single outcome
or to combine more than one outcome. Separate meta-analyses
of each individual outcome measure are sometimes appropriate
where there are enough data; however it is often preferable to take
all available data, particularly when the data are limited, unless
a primary outcome measure has been pre-specified. For instance,
four different neurobehavioural tests might be reported from the
same experimental groups. If we wanted to use a single outcome
we might select the smallest effect size, or have a hierarchy of
preferred outcome measures, or only include data for one specific
outcome measure. Alternatively, we  could combine outcomes as
appropriate to give a single outcome statistic (the “nested” out-
come), representing a global measure of the behavioural outcome
in that comparison. To do this we take each outcome, weight it by
multiplication by the inverse of the variance for that outcome, sum
these weighted values for all outcomes and divide by the sum of
the weights (Eq. (24)). The standard error of this effect size is given
by the square root of the number of comparisons divided by the
sum of the weights (Eq. (25)).

3.3.4. Pooling effect sizes
Effect sizes can be combined using fixed- or random-effects

model (Borenstein, 2009). The fixed effects model is used when
it can be assumed that the different studies each give an esti-
mate of the same effect, which is assumed to be fixed across all
comparisons. Thus, observed effect sizes vary due to random sam-
pling error alone. The random effects model is used when it can
be assumed that the underlying effect size differs between studies,
perhaps due to different doses or routes of administration. Random
effects meta-analysis therefore takes into account both the within-
study (sampling error) and between-study (differences in the true
effect size) variance. The distribution of effect sizes has a weighted
ta from animal studies: A practical guide. J Neurosci Methods (2013),

mean (the summary estimate), a weighted sum of the square of the
deviations from that mean (the heterogeneity), and an estimate
of the variance of the effect sizes beyond that expected by chance
(tau-squared, �2).
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i. Calculate a fixed effects summary estimate. For each compari-
on, a weight is calculated from the inverse of the square of the
tandard error (“inverse variance”). Where pooled data from a
ingle comparison are used, the standard error is calculated as
escribed above (Eq. (25)). Each effect size is multiplied by its
eight and the resulting products are summed, and then divided

y the sum of the weights to give the summary estimate (Eqs. (26)
nd (27)). The 95% CI for the fixed effects estimate is the same as
hat shown in Eq. (37) for the random effects estimate, replacing
SRandom and SERandom with ESFixed and SEFixed respectively. The stan-
ard error of the fixed effects estimate is the square root of the
um of the weights (Eq. (28)). Tau-squared (�2) is a measure of
xcess between-study variation, reflecting the difference between
he observed treatment effects across different studies beyond that
hich would be expected if the assumptions of fixed effects mod-

lling (that all studies measured the same underlying effect) held.
t is used to refine the weighting used in the random effects model,

hich uses both within-the study variance (the variance of the
ndividual studies) and the between-study variance (�2, constant
cross all studies being pooled; Eqs. (29)–(32)). If �2 is large com-
ared to the within study variance, the random effects estimate will
end towards a simple average, and if �2 is zero the random effects
stimate will be the same as the fixed effects estimate.

Because the true effect size for an intervention is unknown, �2

annot be known, but it can be estimated using the method of
oments (Dersimonian and Laird, 1986).
ii. Calculate a random effects estimate. We  now calculate the ran-

om effects estimate as we did for fixed effects, except the studies
re weighted by the inverse of the sum of within study variance
nd �2 rather than by within study variance alone (Eqs. (33)–(35)).
rom the standard error (Eq. (36)) we can calculate 95% confidence
ntervals (Eq. (37)).

.3.4.1. Median survival data. Different approaches have been
escribed for the meta-analysis of median survival or time to event
ata (Michiels et al., 2005). In animal studies we  have the special
ircumstance that cohort size is often orders of magnitude smaller
han the clinical studies for which these techniques were devel-
ped, limiting their validity. We  calculate effect sizes for individual
tudies by dividing the median survival in the treatment group
y the median survival in the control group and then taking the

ogarithm of the quotient (Eq. (19); Simes, 1987). The precision of
urvival studies is related to the number of animals included so we
se this to weight studies, giving a fixed effects weight of N (rather
han inverse variance) (Eq. (22)). �2 is calculated as previously (Eqs.
29)–(32)) and for the random effects analysis, studies are weighted
sing the formula shown in Eq. (38). The random effects estimate

s calculated according to Eq. (35) to which we use the exponen-
ial function to convert the estimate to a linear scale, providing a
gure which is representative of a median survival ratio (Eq. (39)).
his provides a more intuitive summary, as one can use it to esti-
ate, by simple multiplication, what the survival in the treatment

roup would be under different assumptions of control group sur-
ival. Finally the standard error and 95% confidence interval are
alculated according to Eqs. (40) and (41).

.3.5. Heterogeneity
It is sometimes interesting to know if there are important differ-

nces between groups of studies, or study characteristics (such as
elays to treatment) which may  influence outcome. The differences
etween studies can also give some indication of whether they are
rawn from the same (i.e. measure the same thing) or different pop-
Please cite this article in press as: Vesterinen HM, et al. Meta-analysis of da
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lations. To identify heterogeneity, visual inspection of individual
ffect sizes (e.g. funnel plotting) or overall effect size estimations
nd their 95% confidence intervals (CI) can give an informal indi-
ation of the presence of heterogeneity. However although 95% CIs
 PRESS
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which do not overlap indicate statistical significant at the p < 0.05
level, overlapping confidence intervals do not necessarily indicate
a non-significant difference. To empirically assess heterogeneity
we calculate heterogeneity using Cochran’s Q (hereafter referred
to as Q (Cochran, 1954); and I2 (Higgins et al., 2003). There are two
approaches to assessing differences between studies or the impact
of study characteristics, stratified meta-analysis by partitioning of
heterogeneity (Borenstein, 2009), and meta-regression (Thompson
and Higgins, 2002).

3.3.5.1. Estimating the amount of heterogeneity. Q is an estimate of
the between study heterogeneity which is independent of the units
in which the effect size is expressed. Q is calculated from the effect
sizes in the fixed effect model. If the studies are drawn from the
same population of studies which measure the same thing, then
any variation is due to sampling error and the expected value of Q
is simply the degrees of freedom. Under this assumption the values
of Q follow a chi-squared distribution with [k (comparisons) minus
one] degrees of freedom. Therefore the significance of differences
between Q and the expected variation can be tested using the chi-
squared statistic (Eq. (42)). Importantly, a non-significant value for
Q does not necessarily indicate that the studies are drawn from
the same population, as low power within studies (small sample
size for the comparisons) and between studies (a small number of
comparisons contributing to the meta-analysis) may  yield a falsely
neutral result.

While Q is very useful it is not easily understood and is sensi-
tive to the number of comparisons. To address this issue Higgins
and Thompson (2002) defined I2 as the proportion of total variance
between studies that is due to true differences in effect sizes as
opposed to chance (Eq. (43)). I2 lies between 0% (all variation being
due to chance alone) and 100% (all variation reflects real differences
between the true effect sizes between studies) and does not depend
on the number of comparisons in the meta-analysis. Guidance for
interpreting the I2 value is provided by Higgins et al. (2003); 0–25%
is considered to reflect very low heterogeneity; 25–50% reflects low
heterogeneity; 50–75% reflects moderate heterogeneity; and >75%
reflects high heterogeneity. The decision to use a fixed effects or
random effects model based on these statistics is subjective; how-
ever, we would consider using a random effects model on I2 values
greater than 50%.

3.3.5.2. Exploring sources of heterogeneity. Here we describe two
methods to explore sources of heterogeneity; stratified meta-
analysis and meta-regression.

i. Stratified analysis. The principle underlying stratified meta-
analysis is that, if certain study characteristics are important, effect
sizes from studies which share those characteristics will be more
similar to each other than they will to studies which do not share
those characteristics. The heterogeneity is partitioned into that
within groups of similar studies and that between groups of studies.
For each group of studies (or stratification) we  calculate a random-
effects effect size and heterogeneity Q. The heterogeneity statistics
for each grouping are added together and subtracted from the total
heterogeneity to give the residual heterogeneity between groups
(Eq. (42); Excel function, version 2003–2007). The extent of het-
erogeneity between these groups (that is, are they significantly
different?) can then be tested as before using the chi squared dis-
tribution.

ii. Meta-regression. Meta-regression extends the random effects
meta-analysis model by taking into account one or more study-
level characteristics (covariates) and determines how much
ta from animal studies: A practical guide. J Neurosci Methods (2013),

heterogeneity can be explained by taking into account both within-
and between-study variance. Meta-regression can be conducted
using Stata/SE with the linear function, metareg (Eq. (44); Thompson
and Higgins, 2002).
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Meta-regression is a weighted linear regression and describes a
ine of best fit between covariates and effect size. Unless it can be
ssumed that the covariate in question explains all between study
eterogeneity, a random effects meta-regression is used (Egger
t al., 2001), which weights on both within-study variance and
etween-study variance (Eq. (45)).

The measure of between study variance is again termed �2,
nd there are a number of ways of calculating this. The moment
stimator calculation of �2 is that used in DerSimonian and Laird
andom effects meta-analysis but is less suitable when covariates
re included (Thompson and Sharp 1999). Other methods are iter-
tive, and the choice of method directly influences both coefficient
stimates and standard errors (Thompson and Sharp 1999). We rec-
mmend using the restricted maximum likelihood estimate (REML)
pproach to estimate �2 because it is less likely to underestimate or
roduce biased estimates of variance (Thompson and Sharp 1999).
oth univariate (to assess the impact of a single covariable on
ffect size) or multivariate analyses (to assess the impact of multi-
le variables) are possible. Where covariates are categorical rather
han continuous, dummy  variables are required. This converts cat-
gorical variables with n potential values into n − 1 dichotomous
ariables (value 0 or 1), with the final value for the category serving
s a reference value with value 0 across all dichotomous variables.

.3.5.3. Output of model. In conventional linear regression, the
djusted R2 measures the variance in the dependant variable which
s accounted for by different values of the independent variable.
n meta-regression, the estimated between study variance �2 is a

easure of the residual heterogeneity. Therefore the change in �2,
ollowing inclusion of covariables represents the change in residual
eterogeneity, and the variance in the dependant variable which is
ccounted for by covariates is used to calculate an adjusted R2 (Eq.
46)), a measure of how much heterogeneity is explained by the

odel.
The F-ratio is a measure of how much the addition of covariates

as improved the prediction of outcome with larger F-ratios indi-
ating better prediction. The F-ratio is expressed with the df of both
he number of covariates and the number cases given in subscript,
nd significance is tested against the F distribution, commonly used
n analysis of variance.

For each covariate a coefficient (ˇ) is calculated, which repre-
ents the change in y with each unit change in the covariate, along
ith a standard error for ˇ; its 95% confidence interval; and a t-

tatistic testing the null hypothesis that the value of  ̌ is zero (Eq.
47)).

Predictive multivariate regression models can be built using any
f the standard backward elimination, forward selection, or step-
ise approaches. Such models can then be validated using training

nd validation sets, or other approaches such as leave-one-out val-
dation or k-fold validation (Efron, 1983).

. Further considerations

Here we provide further considerations which might be helpful.

.1. Software

Although other software packages (e.g. R statistical software)
ay  be suitable, we use the following: (i) the CAMARADES
icrosoft Access (2003 version) data-manager and Microsoft Excel

any version) for stratified meta-analysis; (ii) Stata/SE using the lin-
ar function, metareg, for conventional meta-regression in which
Please cite this article in press as: Vesterinen HM, et al. Meta-analysis of da
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ffect sizes and errors are assumed to be independent. When this is
ot the case, i.e. when effect sizes, errors, or both, are expected to
e correlated (see Section 2 for details), a more recently developed
robumeta” function in Stata (Hedges et al., 2010) can be used.
 PRESS
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We  have developed the CAMARADES data-manager, access to
which is available upon request (www.camarades.info), and which
can be used to record data and perform analyses. Other free soft-
ware program such as RevMan have been specifically developed
for the meta-analysis; however the reader should be aware that
these were developed for the collation of data from clinical trials.
Comprehensive Meta-Analysis is proprietary software developed
for data entry and analysis in meta-analysis.

4.2. Multiple testing – correcting p values and confidence
intervals?

Meta-analyses of in vivo animal data will often involve large
numbers of contrasts being specified in the study protocol, and the
statistical analysis plan should account for this. We  routinely group
contrasts according to the broad hypothesis being tested (e.g. that
study quality has an impact) or to the category of outcome mea-
sure (structural or functional), and within these groups of contrasts
partition a Type 1 error rate of 5% among the contrasts tested using
Bonferroni correction.

4.3. Missing data

Meta-analyses are based on data available in the public domain,
typically in peer-reviewed journals, or on unpublished data which
has been sought out. The reporting of data is not always adequate
(Sena et al., 2007), and it is our experience that the number of ani-
mals per group or the variance or both are not always reported. In
these situations we make attempts to contact authors for the infor-
mation, or (if many studies are missing the variable of interest) use
a method to calculate and pool effect sizes that does not require
these data, or (if only a small number of studies are missing the
variable of interest) we exclude the data. We  report the prevalence
of inadequate reporting in study publications in a flow chart of the
disposal of publications identified in the review. Additionally if data
for sham animals are missing we  cannot calculate normalised mean
difference effect sizes. In these circumstances, if greater than 10% of
the data for sham animals are missing we would use an alternative
approach such as calculating standardised mean difference effect
sizes.

4.4. Data on a continuous scale where variance is not reported

Sometimes studies report mean outcomes without reporting
variance. If there are substantial other data which do report vari-
ance, we  can simply use these and exclude the others. However
on occasion as many as 80% of publications within a review do not
report variance. In these circumstances it may  be possible to cal-
culate a summary estimate using absolute difference in means or
normalised difference in means; however, because the weighting
given to individual studies is usually based at least in part on inverse
variance we must in these circumstances either not weight (i.e. use
a simple average) or weight according to some other factor such
as the number of animals in each comparison, with the variance of
the summary estimate as the square root of the sum of the squares
of the deviations from the pooled mean.

4.5. Difficulties with certain data values

In some circumstances the calculation of effect size or stan-
ta from animal studies: A practical guide. J Neurosci Methods (2013),

dard error, or both, cannot proceed – if the group sizes are too
small to allow Hedges G to be calculated, or the variance is zero
– and these comparisons are excluded from further analysis. Some
of these circumstances are described in Table 4.
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Table 4
A description of circumstances in which an effect size cannot be calculated.

Cause Consequence Affects which method?

SDc and SDrx are both zero The calculation of the effect size includes a division by zero for SMD; the SE for the
individual effect size will equal zero and so the weighting cannot be calculated.

SMD; NMD

Small  group sizes This can introduce a requirement to take the square root of a negative number. SMD
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Numbers cancel each other out A calculated denominator equals zer
x̄c is equal to x̄sham − x̄c Where lesioning has no effect it is no

intervention

.6. Other types of data presentation

The term effect size is often understood as a treatment effect,
he impact of a treatment intended to improve outcome. How-
ver meta-analyses are not restricted to data from such studies and
re useful tools in understanding disease models as a whole. For
xample we have conducted a meta-analysis on behavioural and
acroscopic data from studies of animal models of bone-cancer

ain. For this we use the value for a normal animal as our control,
nd the value in the animals with bone cancer as the “treatment
roup”. For this, consideration simply needs to be taken in ensur-
ng the direction of effect is the same for all comparisons. However,
t is not always possible to determine the direction of effect size;
or example, some biochemical markers are reported, but it is not
lways clear – or known – whether an increase is a beneficial or
egative effect. In this situation we reported these separately, stat-

ng simply whether the value was higher or lower in the animals
ith bone cancer.

.7. Choosing between multiple control groups

In some situations the choice of the most relevant control group
s not clear. For instance, in studies involving stem cells, data may
e presented for stem cells; for another cell type not thought to
ave certain characteristics; for dead cells; for conditioned culture
edium; for unconditioned culture medium; for saline; or for no

reatment. The preferred choice, and if necessary a hierarchy of
referred choices, should be addressed in the protocol.

.8. Median survival data

The median survival time is the time of the first event at which
he Kaplan–Meier estimator is below 0.5. This is calculated by
rawing a horizontal line at 50% on the y-axis and estimating the

ntercept with the curve. If the curve is horizontal at y = 50%, the
verage of the first and last time point of the horizontal line can
e considered the best estimate of the median. One problem with
his approach is that if more than half the animals in a group (usu-
lly the treatment group) survive to the end of the experiment a
edian survival time cannot be calculated. If we exclude these data

ur summary estimate will be overly conservative so in these cir-
umstances we consider median survival as the last time point of
ssessment and noted that more than 50% of animals survived at
his time. This will still underestimate efficacy, but not to the same
xtent as if the data were excluded completely. There are alter-
ative methods to calculate a pooled median survival estimate,

ncluding the mean survival time; however, survival times tend to
e highly skewed and so the median is generally a better measure
f the central tendency.

.9. Co-treatments
Please cite this article in press as: Vesterinen HM, et al. Meta-analysis of da
http://dx.doi.org/10.1016/j.jneumeth.2013.09.010

Sometimes publications report the effect of drugs in combina-
ion – for instance control (C), A, B and AB. In a review of the efficacy
f A it is reasonable to extract data for A v C and AB v B. However, in

 review of the efficacy of all treatments the comparisons would be
oducing a divide by zero instruction. SMD; NMD
ible to calculate the relative effect of an NMD

A v C, B v C, and AB v C. Unfortunately, if in a review of the efficacy
of A we are only provided with data for AB v C then these should
not be included in the analysis, as any effect may  be due to B rather
than A.

4.10. Using ordinal scale data as continuous

These approaches require the assumption that data lie on an
interval scale (that is, differences between different points on the
scale are of the same magnitude); and that they are normally dis-
tributed. These assumptions do not always hold, particularly for
functional outcomes. However, when datasets are large (as they
usually are in such reviews) parametric manipulations do have
some validity (Lord, 1953). This is however a potential limitation
of the methodology and can usefully be discussed in study reports.

4.11. Including multiple time points

Where differences in the change of outcome over time are of
interest (for instance the acquisition of learning in the Morris water
maze) we can include these data by calculating the area under the
performance–time curve (AUC) for different cohorts. Using the data
extracted regarding mean and variance point estimates, all time
points are used to calculated one overall comparison (Eq. (48)) with
standard deviation (Eq. (49))

4.12. Assessing the relationship between outcome measures

Where more than one outcome measure is reported for the
same cohort of animals we  can assess the extent to which these
outcomes measure the same or different effect of treatment using
meta-regression, using the same approach described above.

4.13. Publication bias

Funnel plotting, Egger regression and “trim and fill” can each be
applied to data from systematic reviews of in vivo data. Where dif-
ferent outcomes have been measured in the same cohort of animals
(see Section 3.3.3) we  recommend using each of these outcomes
rather than the pooled estimate, since to do otherwise would in
effect be suppressing these studies from the publication bias anal-
ysis. For funnel plotting and Egger regression of SMD effect sizes
where studies are small certain symmetries arise because the stan-
dardised effect size is constrained to a certain set of values by its
sample size, and this becomes apparent with small sample sizes,
as is the case for in vivo studies. We  therefore recommend using a
measure of pooled standard deviation in the formula for precision
(1/variance) in Egger regression, shown in Eqs. (50)–(52).

4.14. Alternative effect size calculations, and choice of measure

Alternatives to normalised and standardised mean difference
ta from animal studies: A practical guide. J Neurosci Methods (2013),

analyses include the ratio of means. The performance of this
approach has been compared to mean difference and standardised
mean difference approaches but not to the normalised mean differ-
ence approach (Friedrich et al., 2008). It is reported to perform less
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ell where variance is more than 70% of the effect size, or when
tandardised effect sizes are large, as is often the case in reviews of
n vivo data.

However, performance of each of these approaches has not to
ur knowledge been compared either in simulation or in reanalysis
f existing datasets. The optimal approach for different circum-
tances is therefore not known. On the basis that SMD  is more
onservative than NMD  analysis, and meta-regression is proba-
ly more conservative than the partitioning of heterogeneity, we
end to use NMD  with meta-regression and SMD with partition-
ng heterogeneity, with the alternative approach used to provide
ensitivity analysis.

. Discussion

Here we have outlined the main steps to meta-analysis of data
rom animal studies. It should be noted that there a number of alter-
ative methods, for instance as described by Borenstein (2009).
owever in our experience the methods we have described here
re practical and appropriate for a wide range of circumstances
nd in particular where there are large numbers of small stud-
es with substantial heterogeneity in study design and outcomes
eported, as common in the preclinical sciences. In this section
e discuss some of the limitations to the approaches described
ere, and outline some of the questions which remain to be
nswered.

The choice of whether to use SMD  or NMD  analysis is not always
lear. Because group size is often small, the measured variance is
n imprecise estimate of the population variance, and therefore the
alculation of a standardised effect size introduces a measurement
rror. However, the outcome for sham (unlesioned) animals may
e neither reported nor obvious, and in those circumstances NMD
nalysis is not possible. The investigator may  therefore be faced
ith the choice of an SMD  analysis involving an entire dataset, or

n NMD  analysis involving a proportion of the dataset. This will
epend on a judgement about whether the benefits of NMD  anal-
sis outweigh the loss of data; where possible it is preferable to
stablish the criteria for this judgement in advance, and what-
ver the decision, to use the alternative approach as a secondary
nalysis.

In addition the choice of whether to use stratified meta-analysis
r meta-regression to assess the significance of associations
etween study design characteristics with effect sizes is not always
lear. In preliminary work applying both approaches to the same
arge dataset we have found that meta-regression is substantially

ore conservative, and further analysis should provide better guid-
nce of the most appropriate method in different circumstances.

Meta-analysis is an evolving methodology, and one recent
dvance has been in the handling of dependencies between effect
izes, variance, or both. This is an important consideration and
e are in the process of merging this into our approach to meta-

nalysis of pre-clinical data. Importantly, the nature of preclinical
xperimentation means that the issue of dependencies may  be
ore pronounced than in the clinical literature; we  have observed

hat control groups can serve more than twenty treatment groups;
ne laboratory can produce more than ten research articles on a
articular topic; and there can be over five behavioural endpoints
eported for a single cohort of animals. To account for this we  now
ecommend using the robust variance estimate which is described
n more detail by Hedges et al. (2010).

A limitation to meta-analysis in general is the risk of spuri-
Please cite this article in press as: Vesterinen HM, et al. Meta-analysis of da
http://dx.doi.org/10.1016/j.jneumeth.2013.09.010

us findings due to statistical artefact rather than true associations
etween study design characteristics with effect sizes. Although
his is an important consideration, the use of a correction factor
e.g. Bonferroni) will reduce the likelihood of this.
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6. Conclusions

Animal studies are crucial to our understanding of disease
mechanisms and for testing interventions for safety and efficacy.
Animal studies are inherently heterogeneous, and more so than a
typical clinical trial. Successfully translating findings to humans
diseases depends largely upon an understanding these sources
of heterogeneity, and their impact on effect size. Meta-analysis
is a useful tool for this purpose when the data are systematically
identified. Here we  have summarised the main methods which
can be used to meta-analyse data from animal studies. All of the
methods described have been used previously across a range
of preclinical data, some of which are referred to here. Further
information and guidance on conducting systematic reviews and
meta-analyses of data from preclinical studies is available from
the CAMARADES collaboration (www.camarades.info) or SYRCLE
(http://www.umcn.nl/research/departments/cdl/syrcle/Pages/
default.aspx); for general background reading on systematic
review and meta-analysis (more focused on the clinical perspec-
tive) we recommend textbooks by Higgins and Green (2009) and
Borenstein (2009).
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